ON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES

نویسندگان

  • Hui Zhang Department of Mathematics, Anhui NormalUniversity, Wuhu, Anhui 241000, P. R. China
  • Jin-Xuan Fang School of Mathematical Science, Nanjing Normal University, Nan- jing, Jiangsu 210023, P. R. China
چکیده مقاله:

The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the family of generalized fuzzy quasi-norms to characterizethe generalized locally bounded $I$-topological vector spaces, andgive some applications of this characterization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on local boundedness of i-topological vector spaces

the notion of generalized locally bounded $i$-topological vectorspaces is introduced. some of their important properties arestudied. the relationship between this kind of spaces and thelocally bounded $i$-topological vector spaces introduced by wu andfang [boundedness and locally bounded fuzzy topological vectorspaces, fuzzy math. 5 (4) (1985) 87$-$94] is discussed. moreover, wealso use the fam...

متن کامل

Boundedness and Continuity of Fuzzy Linear Order-Homomorphisms on $I$-Topological\ Vector Spaces

In this paper, a new definition of bounded fuzzy linear orderhomomorphism on $I$-topological vector spaces is introduced. Thisdefinition differs from the definition of Fang [The continuity offuzzy linear order-homomorphism. J. Fuzzy Math. {bf5}textbf{(4)}(1997), 829--838]. We show that the ``boundedness"and `` boundedness on each layer" of fuzzy linear orderhomomorphisms do not imply each other...

متن کامل

LOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES

In this paper, the concept of {sl local base with  stratifiedstructure} in $I$-topological vector spaces is introduced. Weprove that every $I$-topological vector space has a balanced localbase with stratified structure. Furthermore, a newcharacterization of $I$-topological vector spaces by means of thelocal base with stratified structure is given.

متن کامل

Boundedness of linear order-homomorphisms in $L$-topological vector spaces

A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprincipl...

متن کامل

local bases with stratified structure in $i$-topological vector spaces

in this paper, the concept of {sl local base with  stratifiedstructure} in $i$-topological vector spaces is introduced. weprove that every $i$-topological vector space has a balanced localbase with stratified structure. furthermore, a newcharacterization of $i$-topological vector spaces by means of thelocal base with stratified structure is given.

متن کامل

On $beta-$topological vector spaces

We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.  

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 5

صفحات  93- 104

تاریخ انتشار 2012-12-28

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023